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Abstract-A recent investigation of flash-back of flames on slit and cylindrical burners showed that there 
is a systematic difference of about 10% between flash-back gradients of flames on slit and cylindrical 
burners with a burner diameter/width of 3.8 mm. In addition, the critical gradients become almost equal 
for burners with a diameter/width larger than about 6 mm. In this paper the effect of the burner wall 
curvature on the behaviour of, for example, the temperature field and the stand-off distance is analysed. 
The analysis ,jhows that the burner wall curvature has an effect on the quenching layer thickness near the 
burner wall for burners smaller than about 6 mm. When the decrease of the cylindrical stand-off distance 
with increasing burner size is used to calculate the critical flash-back gradient based on a linear velocity 
profile for the cylindrical burners, the critical gradients for cylindrical and slit burners become almost the 
same for burners larger than about 5 mm. The analysis shows that the differences between flames on 
cylindrical and slit burners near the flash-back limit are mainly caused by differences in conductive heat 

transfer towards the burner wall, induced by burner wall curvature. 0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

The stabilization of flames on a burner near the 
quenching or flash-back limit is generally believed to 
be dominated by heat loss of the flame to the burner 
wall. The amount of heat transported to the burner 
wall (mainly by conduction) depends on several 
factors, such as the distance of the flame above the 
burner, the temperature of the wall and the curvature 
of the burner wall. Cooling of the flame by the burner 
wall is especially important when studying phenom- 
ena in which the flame is very close to the burner wall, 
such as near the flash-back limit. 

Flash-back of fla.mes on cylindrical burners has 
been investigated by Lewis and von Elbe [I] and 
Harris et al. [2]. The investigation by Lewis and von 
Elbe [ 1] incorporates the effect of the burner diameter 
(ranging from 3.8 to 15.5 mm) on the critical flash- 
back gradient of natural gas/air flames. The critical 
gradient, defined as the velocity gradient at the wall 
when the flame flashes back, decreases for burner 
diameters larger than 4 mm. This decrease is attri- 
buted to the decreasing curvature of the parabolic 
velocity profile near the burner wall [I]. Harris et al. 
[2] investigated flash-back of methane/air flames on 
cylindrical burners with a diameter larger than 9 mm. 

In a recent numerical and experimental study of 
flash-back of flames on slit and cylindrical burners [3] 
it is shown that there is a systematic difference of 
about 10% between flash-back gradients of flames on 
slit and cylindrical burners with a burner diameter/ 
width 2& of 3.8 mm. A possible difference between 
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the small cylindrical and slit burners is the enhanced 
cooling effect of the cylindrical burners which might 
influence the critical flash-back gradient. The inves- 
tigation also showed that the critical flash-back gradi- 
ents gr for cylindrical and slit burners differ less than 
about 5% for burner widths/diameters larger than 
about 6 mm. This difference is not significant anymore 
because the flash-back gradient is determined numeri- 
cally by reducing the velocity with 5% reduction steps. 
Smaller reduction steps are not useful because of 
model uncertainties, such as the predictkd burning 
velocity by the chemical mechanism. The flash-back 
gradients measured and calculated by Mallens and de 
Goey [3] are given in Fig. 1 (a). Further investigation 
of the effect of burner wall curvature on flame cooling 
and flash-back is necessary to ascertain whether the 
curvature of the burner wall can explain the differ- 
ences. 

Figure l(b) shows the critical gradients after cor- 
rection for the curvature of the parabolic velocity 
profile which is mainly held responsible [l] for the 
decrease of gf with increasing burner size. The gradient 
gLlm, based on a linear velocity profile, is given by [3] 

2Ro - 4 
gf,lin - 2~, 4f 

with 6, the quenching distance, for which we use a 
fixed value, being half the quenching diameter or 
width of cylindrical and slit burners [2]. Note that gf 
is equivalent to the critical gradients reported in refs 
[l, 21. The velocity u in the attachment point (at a 
distance 6, from the burner wall) must equal the burn- 
ing velocity S,. This means that the gradient of a 
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NOMENCLATURE 

reaction parameter [(kg m--3)‘--I~P] 
specific heat [J kg-’ K ‘1 
critical flash-back gradient of the 
velocity profile at the wall [s-l] 
Shvab-Zel’dovich variable for species i 
length scale [m] 
Lewis number of species i 
pressure [N mm’] 
specific gas constant [J kg-’ K-‘1 
the mass of species i consumed per unit 

I mass fuel [kg, kg, ] 
temperature [K] 
reaction rate parameter [K] 
velocity in r-direction [m s-‘1 
velocity in x-direction [m s-i] 
velocity in z-direction [m sP’1 
radius of curvature of the burner wall 

[ml 
reaction enthalpy [J kgf,‘] 
cooling rate by the burner wall [w] 
energy loss at the burner outflow 

WI 

SI. 
Y, 

flame speed [m s- ‘1 
mass fraction of species i. 

Greek symbols 

; 

reaction rate parameter 
reaction rate parameter 

6, thickness of the quenching layer [m] 

:! 
length scale [m] 
thermal conductivity [J m-’ K-’ ss’] 

Pf” fuel mass consumption rate 

[kg m -3 s-‘I 
P mixture density [kg m-‘I. 

Subscripts 

cyl referring to a cylindrical burner 
car referring to a slit burner 
fu fuel 
ox oxygen. 

Superscripts 

1: 
unburnt conditions 
burnt conditions. 
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Fig. 1. Flash-back gradients gr (a) and flash-back gradients 
based on a linear velocity profile gtlm (b) for slit burners and 
cylindrical burners as a function of 2Ro. The lines denote the 
numerical results for slit (solid line) and cylindrical burners 
(dotted line). The markers refer to experimental results 
obtained by Mallens and de Goey [3] (solid spheres and 

triangles) and Harris et al. [2] (solid squares). 

linear velocity profile at the burner wall is given by 
gf,iin = S,/S, [3]. The burning velocity in the attach- 
ment point is close to its adiabatic value for both slit 
and tube burners [l]. The differences in gf,,ln for slit 
and tube burners are, therefore, mainly determined by 
differences in 6,. 

The gradients based on a linear velocity profile in 
Fig. 1 (b), however, still show a decreasing trend with 
R,. This might be caused by other effects on the critical 
gradient, such as different velocities in the quenching 
layer near flash-back. The larger variation of gr,,,” for 
the cylindrical burners might be caused by a decrease 
of 6, with increasing Ro. In Fig. l(b), however, 6, is 
assumed to be constant. 

In this paper we present an analysis of the differ- 
ences between slit and cylindrical burners with respect 
to the cooling rate of the burner. The main goal of the 
analysis is to provide explanations for and to sustain 
the differences between the flash-back gradients of 
flames on slit and cylindrical burners [3] by analysing 
differences in 6, between cylindrical and slit burners. 
The results of the analysis will also be used to inves- 
tigate the effects of the burner size on the thickness of 
the quenching layer and the critical gradient. 

The analysis is an extension of the analytical treat- 
ment performed by de Goey and de Lange [4] for 
slit burners. The extension basically consists of the 
introduction of a burner wall with a curvature l/R,, 
and of the use of cylindrical coordinates (r, z) instead 
of Cartesian coordinates. The effect of the assumption 
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Fig. 2. The burner geometry with the two coordinate systems 
(a) and the schematical profiles of T, Y, and J, as a function 

of x (b). 

of a constant thermal conductivity, a constant unidi- 
rectional velocity and the separation into two regions 
introduced in the analysis (see Section 2) on the behav- 
iour of the temperature and the mass fractions in the 
quenching layer has been investigated [4] by modelling 
the situation depicted in Fig. 2(a) numerically (with- 
out the division of the domain in two regions). It was 
shown that the general behaviour of the temperature 
and the mass fractions in the quenching layer and the 
quenching layer th:ckness are not significantly affected 
by the assumptions mentioned above. Basic issues of 
the model are discussed in Section 2. The solutions 
for the temperature T, the mass fractions Y, and the 
Shvab-Zel’dovich variables are presented in Sections 
3,4 and 5, respectively. In Section 6 the energy balance 
is verified. Then tha effect of the burner wall curvature 
on the thickness ct- the quenching layer will be inves- 
tigated (Section 7) and the behaviour of T and the fuel 
mass fraction Y, in the quenching layer is discussed 
(Section 8). Finally, in Section 9 the results of the 
analysis will be us:d to provide further explanations 
for the differences between critical flash-back gradi- 
ents of flames on slit and cylindrical burners. 

2. TWO~.DIMENSIONAL MODEL 

The burner geometry is the same as the geometry 
used in ref. [4] [see Fig. 2(a)]. The only difference is 
that the burner wall has a non-zero curvature l/R,,. 
Two coordinate systems are given in Fig. 2(a). One 
system (x, z) that we used by de Goey and de Lange 
[4] and the (r, z) system that will be used in the present 

study. The coordinate system (x,z) is given because 
the results will be compared with the results obtained 
in ref. [4]. We will now introduce the basic assump- 
tions. It is assumed that there is no lateral velocity 
component (u, = u, = 0). Note that this assumption 
reduces the continuity equation to pv, = p”v,U, where 
the superscripts u refer to the conditions at in the 
unburnt mixture z + - co. The ideal gas law 
(P = pR,T) is used as the equation of state, where P 
is the pressure and R, the specific gas constant of the 
mixture. The deflagration process considered here is a 
low Mach number flow which implies that the pressure 
can be assumed to be constant. Furthermore, the con- 
stant R, is assumed to be independent of the mixture 
composition. These assumptions lead to a density 
which depends on temperature only : p T = ~“7”. 

The thermal conductivity 1 and the specific heat cp 
are both taken to be constant. For the Lewis numbers 
of fuel and oxygen we use Le, = 1. These assumptions 
are introduced to make the analytical treatment poss- 
ible. 

As chemical model a one-step irreversible reaction 
fuel + oxygen + products 1s used with an Arrhenius- 
type source term [5]. The source term for the fuel mass 
fraction equation pfU is given by 

prU = -Ap(“+fl) Yf@, e(PTJT), (2) 

The reaction rate parameters A, LX, fi and T, are deter- 
mined by fitting the burning velocity SL as a function 
of equivalence ratio 4 and flame temperature T, to 
experimental results [6-81. This chemical model is also 
used in the earlier mentioned study of flash-back [3]. 
The conservation for the temperature T and mass 
fraction of species i, Yi with i = (fu)el, (ox)ygen, 
(pr)oducts, now become 

18~ a2T ia a ---_--- r- = 
L aZ az* (3 r ar ar -AHi&, (3) 

and 

1 ar, a2y i a 
a aZ a22 (4) 

with AH the combustion enthalpy and s, the stoi- 
chiometric factor of species i. The values of the physi- 
cal parameters, such as 1, cp, AH and the unburnt and 
burnt values of T and Y,, are given in Table 1. The 
equivalence ratio 4 is equal to one. The length scale 
L is defined by 

a 
L=-- 

p”v:c,. (5) 

In the remainder of this section the behaviour of T 
and Y, in the quenching layer will be discussed to 
clarify some additional assumptions in the analysis. 
Profiles of the Shvab-Zel’dovich variable 

J c T Y,.. _P$.A 
f”,Ox - AH sfU,OX 
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Table 1. The physical parameters and the temperature and 
mass fractions of fuel in the burnt and the unburnt mixture 

Parameter Value Dimension 

1.13 
300 

2250 

0.055 0.0 
0.092 

1365 
4.813 x 10’ 
3.883 
2.6 x lOI 
1.2 
2.8 

16900 

[kg m-7 
[Kl 
WI 

i-1 f-1 
[J mm’ K-’ SC’] 

“:f;;_Fl- ‘I 

[kg,, kg, ’ 1 
[(kg m-3)(1-~mfl)] 

Kl 

will be treated as well. Physically, Ji can be interpreted 
as the sum of thermal enthalpy =c,T and chemical 
enthalpy =AH Yi/sl in the mixture. The expression 
for J, can be derived from a linear combination of the 
conservation equations for T and Y? The source terms 
of T and Y, cancel out if Le, = 1. Note that this implies 
that J, is not affected by the chemical source term in 
the flame. 

We assume that the flame is flat near the sta- 
bilization point (parallel to the r-axis) and that the 
flame flashes back if the velocity 0,” is decreased. This 
implies that the cooling near the burner wall and the 
quenching distance 6, are maximal. The flat flame is 
assumed to be stabilized at z = 0 for Y < R,-6, and 
is extinguished due to the cooling rate by the burner 
wall for Ro-6, < r < Ro. This implies that the fuel 
mass consumption rate prU is almost zero in the latter 
area [see Fig. 2(b)]. We will, therefore, assume that 
prU = 0 for R,+6, < r < R,. The zero fuel mass con- 
sumption implies that the mass fractions only change 
due to diffusion and convection. This, in turn, leads 
to constant mass fractions in a thin layer of thickness 
‘1 at the wall (R,- q < r < R,) because there is no 
diffusion flux through the wall. The Shvab-Zel’dovich 
variables J, are not affected by the presence of the 
flame because the differential equation for J, has no 
chemical source term. This implies that J, is not influ- 
enced by the presence of the flame at r = R, - 6,. This, 
and the fact that J, is constant in the flame region, 
implies that .& is constant in a region 
Ro- 6, < r < R,,--v. Because of the fact that J, is not 
affected by the chemical source term in the flame, the 
decrease of the mass fractions has to be proportional 
to the increase of Tin such a way that J, is constant ; 
i.e. the diffusion of heat (c,T) towards the wall is 
compensated by a chemical enthalpy flux of AH Y,/s, 
caused by diffusion of fuel and oxygen. The Shvab- 
Zel’dovich variables will decrease for R,, - q <: r < R, 
because the diffusion of fuel and oxygen is zero in this 
area [see Fig. 2(b)]. 

3. THE THERMAL BOUNDARY LAYER 

In this section an approximate solution of the 
energy equation for the temperature will be presented. 
The domain is divided into two regions: a region 
Ro- 6, < r < Zt,, where the cooling is important and a 
region r < R. - 6, in which the profiles of Y,, T and J, 
are independent of the distance from the burner wall. 
The temperature profile as a function of z for 
r < R,-6, is given by the solution of a flat flame 
independent of r : 

T(r,z) = T”+ATe’jL for r < A,, -6,, z < 0 

T(r,z) = Tb for z > 0. 

This means that the reaction sheet at z = 0 is con- 
sidered to be indefinitely thin [9]. AT = T,,- T, 
denotes the difference between the flame and the 
unburnt temperature. The boundary conditions for 
the area R,-6, < r ,< R. where cooling is important 
then becomes 

z<O; r=R,: T=Y 

z < 0; r = R,-6,: T-r 7’“+ATe’lL 

and : 

~+--a; R,-Cf,<r<R,,: T=T”. 

The fuel mass consumption rate prU is assumed to 
be zero in the cooling layer. This assumption, the 
shape of the boundary conditions and the assumption 
of a unidirectional flow imply that a separation of 
directions may be applied. This leads to the trial solu- 
tion : 

T(r,z) = T”+t,(~)*t~(r). (7) 

The separation of directions makes it possible to give 
an exact solution of the energy solution for the given 
boundary conditions. Substitution of eqn (7) into the 
energy eqn (3) with pfU = 0 gives 

with c2 the separation constant. Note that L is 
assumed constant in eqns (3) and (8), which implies 
that the solution given below is restricted to a constant 
u, in the r-direction. Two different solution types for 
t(z) and t2(r) are taken into account : 

for c2 = 0 : t, = k, er*‘; t2 = k,ln(r)+k, (9) 

and 

fort’ > 0: t, =k,e”*‘; t2 =k5Z0(cr)+k6KO(cr) 

(10) 

with F* = 1/2L[l+ J-1. The functions 
Z,,(cr) and &(cr) are modified Bessel functions of zer- 
0th order. The c2 < 0 solution type is not taken into 
account because it shows an oscillatory behaviour 
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which is not in accordance with the flat flame solution 
for r < &+6, and the solutions for c2 2 0 are 
sufficient to describe the desired solution. Note that 
the solution given above also hold for the mass frac- 
tions and the Shvab-Zel’dovich variables as long as 
they are described by the same type of conservation 
equations. 

The solution given by eqn (9) for c* = 0 satisfies all 
the boundary conditions for the energy eqn (3) : 

T(r,z) = T”+AT- erlL 

for&-6,<r<R,. (11) 

The solution found for a burner wall with no cur- 
vature (1 /R, = 0) by de Goey and de Lange [4] should 
be recovered if the limit for R, + co is taken in eqn 
(11). The solution found in ref. [4] reads 

x 
T(x,z) = 7’“+A-ee’lL. 

6, 
(12) 

When r = Ro--x is substituted into eqn (1 l), it can be 
shown that eqns (11) and (12) become equal for R. -+ 
co by using the expansion ln( 1 + E) = E + 0(s2) for E -+ 
0. 

The resulting pr’ofiles T(r, z = 0) are shown in Fig. 
3 for different values of R,. The effect of R, on the 
behaviour of the temperature in the quenching layer 
will be discussed after the section in which the thick- 
ness of the thermal boundary layer is discussed. 
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Fig. 3. The profiles of Tand Yr, for various values of R,. The 
horizontal distance from the wall is normalized with the . . 

q uenchmg distance. 

4. THE DIFFUSIVE BOUNDARY LAYER 

The mass fractions of fuel and oxygen are described 
by the same type of differential equation as the tem- 
perature T. This means that the solutions given in 
eqns (9) and (10) are also valid for Ye The boundary 
conditions for Y, are : 

z<O; r=R,: !?3_() 
dr - 

z<o; r= R,-6,: Y, + Y;+AYje’lL 

z-+-co; Ro-6,<r: Y,= Yy 

with A Yi equal to Yy - Yi(R, - 6,, 0) (A Y, will be cal- 
culated later in the text). Note that the boundary 
condition at r = R. is of a different type than the 
boundary condition for T. This implies that a solution 
analogous to eqn (11) is not sufficient to describe the 
solution for Yi near the burner wall. The correct shape 
of the mass fraction profiles is found by the addition 
of c2 > 0 solutions to the c* = 0 solution. The 
inclusion of the c2 = 0 solution is necessary to ensure 
that the Shvab-Zel’dovich variables are not influenced 
by the presence of the flame at r = R,--6,. The solu- 
tion for Y, is, therefore, given by 

Y,(r,z) = r;“+ (AK6,-J [In (&)e++ F,(r.z)] 
In l-F 

0 

(13) 

+9(c)exp &[l --d-l 
( >I 

dc. (14) 

The modified Bessel function Z&(cr) is not included in 
equation (14) because &(cr) decreases with increasing 
cr while Fi(r, z) should be increased with increasing r. 
The amplitudes 9(c) and 9(c) indicate the con- 
tribution of solutions with length scale l/c in the r- 
direction. Note that solutions with c < 0 do not con- 
tribute because Zo(cr) is symmetrical around cr = 0. 
The procedure for obtaining expressions for g(c) and 
9(c) is similar to the procedure used in ref. [4] and 
will not be repeated here. The resulting expression for 
F(r, z) reads 

x [&J cos (k&)e-‘-/“) (15) 
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with ik E &%??. AY, can be calculated by set- 
ting Y, equal to the burnt value Yp in the flame attach- 
ment point (r, Z) = (R,-6,, 0). Note that the 
expression for yj is derived from solutions restricted 
to a constant velocity in the r-direction which implies 
that the following expression for AY, is also limited to 
this special case. This leads to the following expression 
for AY: 

AYi= , p\ (16) 
In l-2 +Pi(Ro-6,,0) 

( 1 0 

A similar expression for ATis derived in the following 
section. The above solution is verified by calculating 
the limit for R,, + 00. The Cartesian solution found in 
ref. [4] has to be recovered then. The solution [4] is 
equal to 

Y~(x, Z) = Yy + AY$, 5 czlL + pi(x, 2) 
8,’ I 

(17) 

with 

First note that the factor l/R, in eqn (15) together 
with the factor l/ln(l -6,/R,) becomes equal to the 
factor l/6, in eqn (18) for R, -+ co. Furthermore, when 
r = R, - x is substituted in eqn (13) it can be shown 
that eqn (13) becomes equal to eqn (17) for R. ---* co 
if 

lim 
R”-m 

=E+~X) (19) 

which follows from the following property of a modi- 
fied Bessel function of order v : 

lim,,, L(z) x - &. (20) 

The profiles of the mass fractions Y,(r, z = 0) given by 
eqn (13) are also given in Fig. 3 for various values of 
R,. They will be discussed after the section with the 
discussion of the thickness of the thermal boundary 
layer. 

5. THE SOLUTION OF THE SHVAB-ZEL’DOVICH 
VARIABLES 

The previous expression of AT in eqn (11) has to 
be reconsidered before we turn to the solution for the 
Shvab-Zel’dovich variables. This is necessary because 
the solution given in eqn (11) gives rise to a dis- 
continuous derivative of J,(r, z) at r = R,-6,. The 
derivative becomes continuous if the decline of the 
mass fractions is proportional to the increase of Tin 
the quenching layer. We will, therefore, redefine the 
solution for T as 

In f 

T”+AT 
( > 0 

T(r,z) = 

In I-2 
( 1 

erlL (21) 

0 

for R. - 6, < r < R,, and with AT defined as 

(Tb-_)ln l-2 
( > 0 

AT= 

In 1-g +FZ(Ro-t&,0) 
( > 

(22) 

cl 

The solution for J, can be found by substitution of the 
solution for T and Y, in eqn (6) : 

Ji(r, z) = Jr + AT 
6 fi@>Z). 

( > 

(23) 
S,ln 1-g 

0 

Note that the solution given above approaches Jp for 
r -+ Ro-6, which implies that the Shvab-Zel’dovich 
variables are indeed not influenced by the presence of 
the flame at r = R,-6,. Therefore, the use of eqn 
(22) in the solution of the energy equation leads to a 
physically correct behaviour of the Shvab-Zel’dovich 
variables and enhances the quality of the further 
results. 

The solution for the Shvab-Zel’dovich variables for 
z = 0 is given in Fig. 4 for various values of &. The 
effect of the burner radius R. is negligible for R, > 3 
mm. This indicates that the difference between cyl- 
indrical burners and slit burners (with respect to the 
behaviour of JJ becomes negligible for burners with 
a diameter or width larger than 6 mm. 

6. THE ENERGY BALANCE 

The gross energy conservation in the region below 
the flame can be verified by using the solution for 
Ji(r, z) and T(r, z). The total cooling rate by the wall 
can be calculated by using eqn (11) : 
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t 

Fig. 4. The profiles of J&r, z = 0) for various values of &. 
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CR,-r) /s4 - 

(24) 

The total energy 10:;s at the outflow of the tube (z = 0) 
can be calculated as follows : 

Qr = 2np”v”AH rdr[J;-J&,z = 0)] 

= 2np”v:AH rdr 

which, after substitution of eqn (15), becomes 

Qr = 
- 4xp”v,“AHA YiL 

s 

R~ 

sinRo In 
o rdr 

X c 

(25) 

(26) 
Jo 1, (d;;k’Ro)Lv/l+k” 

The integral in the previous equation can be rewritten 
by substituting LY =: r/L and the constant a0 = ROIL. 
Then the integral over the Bessel function Z. can be 
calculated which results in a Bessel function Z,. Cal- 
culation of the integral over k then leads to the fol- 
lowing expression for the heat loss at the burner out- 
flow : 

a = 
2alATL 

(27) 

AHAY, cpAT 1 
-=- and L=-_. 

Si6, 4 PVC, 

The fact that eqns (24) and (27) lead to the same 
result proves that the solutions for T, Y, and J, in the 
quenching layer satisfy energy conservation. 

7. THE THICKNESS OF THE THERMAL 
BOUNDARY LAYER 

In this section an estimate will be made of the effect 
of the burner wall curvature R, on the thickness of 
the thermal boundary layer 6,. The estimate is based 
on the local balance of the burning velocity and the 
mixture velocity in the attachment point 
(r, z) = (R, - S,, 0) [4]. The solution for the Shvab- 
Zel’dovich variables indicates that the maximum tem- 
perature and burning velocity are only reached for 

6, + co. This means that 6, has to be so large that 
the flame temperature and burning velocity in the 
attachment point are close to their maximum values 
(denoted by Tb and S,). The temperature in the attach- 
ment point (Ro-a,, 0) can be calculated from eqn 
(11). The result (T(R,-a,)-7”)/(p-T”) is given in 
Fig. 5(a). The burning velocity in the attachment point 
&(R, - 6,, 0) [see Fig. S(b)] is calculated using the 
analytical relation between the burning velocity and 
the flame temperature for a flat burner-stabilized 
flame [4, lo] : 

ln &(Ro - S,>O) > - Ta T, 
St. = 2T(Ro-6,,0) +z 

a+/?+2 
+ 2 

-1n ( T(Ro%6q’ O)). (28) 

The burning velocity in the attachment point pre- 

“0 2 4 6 

Fig. 5. The temperature (T(&,-6,) - T)/(p- 7”) (a) and 
the burning velocity S,(R, - 6,, 0)/S, (b) in attachment point 

(R,- 6,, 0) for various values of &. where we used : 
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Fig. 6. The ratio of the stand-off distances of the flames on 
the cylindrical burners and the slit burner (c&&&~) as a 

function of R, predicted by the analytical model. 

dieted by eqn (28) is also given in Fig. 5 for three 
values of R,,. The estimated value for 6, is approxi- 
mately 0.85 mm when the stabilization criterion 
S,(R,-a,, 0)/S, = 0.98 for slit burners (R. -*co) is 
taken. This estimation can also be made by using the 
same criterion for other values of &. In this way, the 
ratio of the stand-off distances for cylindrical burners 
&,, and the slit burner 8q,car can be calculated. Vari- 
ation of the value for the criterion SL(Ro- a,, 0)/S, 
between 0.97 and 0.99 did not significantly affect the 
ratio Sq,cy,/Bq,car. The resulting ratio 8q,cyl/6q,car is plotted 
as a function of &, in Fig. 6. Note that this ratio 
only changes due to differences in conductive energy 
transport at different values of & because the con- 
vective term in the energy eqn (3) is independent of 
&. 

8. BEHAVIOUR OF T AND v,, IN THE 

QUENCHING LAYER 

The profiles for T and Y, in the quenching layer at 
z = 0 are given in Fig. 3. Note that the horizontal 
distance in Fig. 3 is normalized with the quenching 
distance 6, so that effects due to differences in the 
stand-off distance are not visible in Fig. 3. It is clearly 
visible in Fig. 3 that the temperature in the quenching 
layer decreases for smaller cylindrical burners due to 
the enhanced cooling by these burners. The decreasing 
temperature leads to higher fuel mass fractions in the 
quenching layer because of the conservation of Jr” for 
r < (R,- q). The profiles of T and Y, for the cyl- 
indrical burners almost coincide with the profiles for 
the slit burner (R, + co) for burner radii larger than 
approximately 3 mm, which is in agreement with the 
behaviour of 6, discussed in the previous section. 

The heat loss of the flame in the attachment point 
for r = h-6, and y = 0 can be determined from 

Q flame = 1; 
IAT 

= 
r=R,--b,:)=o (&_6,)ln 1 _ 2 

( > 0 

(29) 

Evaluation of eqn (29) in the attachment point 
(R,-&,,O) results in values of 3.4. 105, 2.2-10’ and 
2.1 *lo’ J m-* SC’ for R. = 1.5, 3.0 and &-+ co, 
respectively. Note that the heat loss of the flame for 
R. = 3.0 mm differs 5% from the heat loss for &, -+ 
cc which is comparable to the difference in the critical 

gradients for slit and cylindrical burners [see Fig. 
1 @Il. 

9. THE DEPENDENCE OF FLASH-BACK 

GRADIENTS ON BURNER GEOMETRY AND 
SIZE 

We will now examine the dependence of the critical 
flash-back gradient on burner geometry and size by 
using the results obtained for &&&car in the previous 
section. 

It is clearly visible in Fig. l(b) that gtlin for the 
cylindrical burners shows a significantly larger vari- 
ation with R. than the gradients for the slit burners. 
In addition, the cylindrical values for g,,, do not 
appear to approach the slit burner values for larger 
burners. This is probably due to the constant value for 
6 q,Cy, = 1.6 mm used in Fig. l(b), while the analytical 
model predicts a decreasing stand-off distance c&,, 
with increasing &, (which is also expected from a 
physical point of view). This result will now be used 
to recalculate gel,” for the cylindrical burners. The aim 
of this calculation is to investigate whether the larger 
variation of gr,ii, for cylindrical burners and the obser- 
vation that the gradients for large cylindrical and slit 
burner do not become equal are mainly caused by the 
assumption that &icy1 is constant in Fig. l(b). The 
absolute values of Sq,cy, z 1.1 mm for R, = 1.6 mm 
and &,,car x 0.97 mm for Rd,car = 1.6 mm predicted by 
the analytical model, however, deviate about 20-30% 
from the experimental values R+,, = 1.6 mm and 
R d,car = 1.2 mm. The stand-off distance of the flames 
computed numerically is probably much closer to the 
experimental values R,,,, and Rd,car. This can be con- 
cluded from the good reproduction of gf by the 
numerical model. We, therefore, decided to use the 
experimental values Rd,cy, and Rd,car for a,,,, and &rcar 
for & = 1.6 mm. The decrease of c$~~,/&,+ is then 
used to calculate &,,i as a function of &. The stand- 
off distance &Car is assumed to be constant and equal 
to &car = 1.2 mm. The resulting values for 84,car and 
6 9,Cyl are substituted in eqn (1) to calculate gten. Note 
that gf,rSn = &I&, and that g~.lm.carlg~,l,n,cy~ = ~q,cyrl~q,car. 
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300 t--- 4 !j 6 7 8 9 
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Fig. 7. The critical gradient based on a linear velocity profile 
[eqn (l)]. For the slit burners we used 6, = 1.2 [2] ; for the 
cylindrical burners we used 6, = 1.6 mm [2] for 2R, = 3.2 
mm. For larger diameters 6, is assumed to decrease according 

to bq,cy,/&,car given in Fig. 6. 

The result for gel,” is given in Fig. 7. The variation 
of geli, with burner size for cylindrical burners in Fig. 
7 is almost equal to the variation for the slit burners. 
This illustrates that gee,, becomes approximately equal 
for large slit and cylindrical burners if a decreasing 
value of 8q,CYl is med. Only near R,, z 2 mm is an 
increase detected, which is caused by the steep 
decrease of gf,CYl near the quenching diameter which, 
in turn, is caused by the large cooling rate near flame 
quenching (the flame quenches for Rd,cyl = 1.6 mm). 
Note that the critical gradient becomes zero for 
R, = Rd,cy, (also see ref. [ 11). For slit burners the gradi- 
ent becomes zero at Rd,car = 1.2 mm. The behaviour of 
the cylindricalgr,,,, als a function of R,, is also physically 
more justified since it has the same behaviour as for 
slit burners for large values of 2Ro. 

10. CONCLUSIONS 

An analysis has been presented to predict the effect 
of the burner wall curvature on the cooling rate by 
the burner. The analysis has been used to investigate 

the stand-off distance ratio of cylindrical and slit bur- 
ners 6q,cy,/bq,car as a function of R,. The results show 
that the differences in stand-off distance between cyl- 
indrical and slit burners increases to about 10% for a 
burner width/diameter of 4 mm. This is of the same 
order of magnitude as the observed differences 
between critical flash-back gradients based on a linear 
velocity profile of flames on slit and on cylindrical 
burners [3]. 

Furthermore, the analysis shows that the effect of 
the burner wall curvature on the profiles of T, Y, and 
J, is negligible for burners larger than about 6 mm. 
The study indicates that the observed differences in 
flash-back behaviour [3] are dominated by differences 
in conductive heat transfer to the burner wall due to 
burner wall curvature. 
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